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DIABETES 

• In 2019, diabetes was the direct cause of 

1.5 million deaths.

• Diabetes is a major cause of several 

comorbidities: blindness, kidney failure, 

heart attacks, stroke and lower limb 

amputation.

• WHO launched the Global Diabetes 

Compact aiming for sustained 

improvements in diabetes prevention.

Katsarou, A., Gudbjörnsdottir, S., Rawshani, A. et al. Type 1 diabetes mellitus. Nature Reviews 

Disease Primers 3, 17016 (2017). https://doi.org/10.1038/nrdp.2017.16
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DIABETES PREDICTION USING MACHINE LEARNING 

• Due to the multidisciplinary nature of 

diabetes, predicting and detecting 

this disease continues to pose a 

significant challenge.

• Machine learning methods have 

shown promise in identifying diabetes 

patterns and risk factors, enabling 

early detection and personalized 

interventions. 

 



The goal is to integrate data from various sources and apply 

machine learning methods to improve the early-stage detection of Diabetes.
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KI-DIABETES DETECTION PROJECT
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GENE EXPRESSION DATA

• Gene expression values are numerical representations indicating the expression levels of genes under 

specific conditions.

• The expression values are organized in a matrix 𝑚 × 𝑛, where 𝑚 is the number of samples, 𝑛 is the 

number of genes, and 𝑚 << 𝑛. 

…P1

P2

…

G1 G2

GEP1,G1

…

Pm

G3 G4 G5 G6 Gn

GEP1,G2 GEP1,G3 GEP1,G4 GEP1,G5 GEP1,G6 GEP1,Gn

…GEP2,G1 GEP2,G2 GEP2,G3 GEP2,G4 GEP2,G5 GEP2,G6 GEP2,Gn

…... … … … … … …

…GEPm,G1 GEPm,G2 GEPm,G3 GEPm,G4 GEPm,G5 GEPm,G6 GEPm,Gn



GENE EXPRESSION INTEGRATION CHALLENGE
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Gene expression datasets typically only 

have few instances, and different datasets 

record different gene expressions. 
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Solutions

Use only one dataset, 

thereby having only little 

training data.

Try to combine multiple 

datasets that are typically 

“incompatible‘’.
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• 900+ biomedical ontologies 

covering many domains and 

fitting different applications.

• Knowledge graphs (KGs) can 

be explored for many 

biomedical applications such 

as finding new treatments for 

existing drugs, diagnosing 

patients, identifying 

associations between 

diseases and genes, etc.
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KNOWLEDGE GRAPHS AND DATA INTEGRATION
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METHODOLOGY

The goal is to integrate multiple expression datasets into a biomedical KG and then use it for diabetes prediction.
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METHODOLOGY
STEP I: BUILDING THE KNOWLEDGE GRAPH
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The KG is built by integrating:

 
• Gene expression data 

using two strategies: 

representing patient gene 

expression values in a KG 

using blank nodes and 

binning approaches; 

linking patients and genes 

based on expression 

values.
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METHODOLOGY
STEP I: BUILDING THE KNOWLEDGE GRAPH

The KG is built by integrating:

 
• Gene expression data 

using two strategies: 

representing patient gene 

expression values in a KG 

using blank nodes and 

binning approaches; 

linking patients and genes 

based on expression 

values.

• Domain-specific 

knowledge including Gene 

Ontology (GO) data, and 

protein interactions.
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FUT8METHODOLOGY
STEP I: BUILDING THE KNOWLEDGE GRAPH

The KG is built by integrating:

 
• Gene expression data 

using two strategies: 

representing patient gene 

expression values in a KG 

using blank nodes and 

binning approaches; 

linking patients and genes 

based on expression 

values.

• Domain-specific 

knowledge including Gene 

Ontology (GO) data, and 

protein interactions.
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METHODOLOGY
STEP II: LEARNING PATIENT REPRESENTATIONS
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Two distinct approaches are 

employed to represent patients:

• Generating RDF2vec 

embeddings directly for the 

patients using the KG. 
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METHODOLOGY
STEP II: LEARNING PATIENT REPRESENTATIONS

Two distinct approaches are 

employed to represent patients:

• Generating RDF2vec 

embeddings directly for the 

patients using the KG. 

• Generating RDF2Vec gene 

embeddings and represents 

patients as the weighted 

average of gene embeddings, 

determined by the respective 

gene expression values.
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METHODOLOGY
STEP III: PREDICTING DIABETES

• Diabetes prediction is 

formulated as a binary 

classification task. 

• The patient representations are 

fed into a decision tree for 

training. 
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Datasets

Number of samples Number of shared genes

Total T1D Non-T1D GSE15932 GSE30208 GSE55098

GSE15932 63 37 26 368 0 0

GSE30208 22 12 10 0 764 337

GSE55098 16 8 8 0 337 764

DATA
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Three diabetes-related GEO datasets (GSE15932, GSE30208, and GSE55098) are considered.

Number

Triples 2433477

Types of relations 56

GO classes 51375

Proteins 19169
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EXPERIMENTAL SETUP

• To assess the efficacy of the 

proposed methodology, the diabetes 

performance on the GSE15932 

dataset is analyzed by enriching the 

training data with information from the 

GSE30208 and GSE55098 datasets.

• A stratified cross-validation strategy is 

employed to ensure robust evaluation.
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BASELINES

2 baselines that employ 

the expression values of 

the patient directly as 

input for the classifier:

Exclusively employing data from one single dataset.

Merging all measured genes across datasets and 

setting the value to 0 when the patient does not have 

an expression value.
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Acc Pr Re F1 WAF AUC

Baselines

Only one dataset 0.554 0.708 0.561 0.578 0.529 0.560

Using all the datasets 0.442 0.650 0.314 0.396 0.422 0.474

Proposed Methodology

Patient rep. using 

weighted avg. gene emb. 
0.619 0.677 0.739 0.683 0.589 0.606

Patient rep. using KG with 

binning approach 
0.481 0.565 0.579 0.551 0.460 0.466

Patient rep. using KG with 

patient-gene links
0.583 0.638 0.604 0.595 0.567 0.578

Table 1: Average diabetes prediction performance on the 

GSE30208 dataset for the baselines and our methodology.

PERFORMANCE RESULTS
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• The results confirm the 

hypothesis that injecting 

other expression datasets 

can improve the 

performance of machine 

learning models.

• The strategy involving the 

weighted average of gene 

embeddings for patient 

representation emerges as 

particularly promising.



Figure 1: Performance comparison between using a KG with and without domain 

knowledge generated with (a) binning and (b) patient-gene links.
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ABLATION STUDY
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Knowledge about 

protein functions and 

interactions can play 

an important role in 

integrating data from 

datasets measuring 

gene expression 

across different 

genes.



CONCLUSIONS
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• We present an approach that enables a comprehensive 

representation of gene expression data from different datasets 

within a KG. 

• The results of our experiments showed that integrating gene 

expression data improves the performance of diabetes 

prediction.

• The proposed approach is versatile and can be extended to 

the prediction of other diseases.
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