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| DIABETES
l

Pancreas

In 2019, diabetes was the direct cause of
1.5 million deaths.

Diabetes is a major cause of several
comorbidities: blindness, kidney failure,
heart attacks, stroke and lower limb
amputation.

WHO launched the Global Diabetes
Compact aiming for sustained
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DIABETES PREDICTION USING MACHINE LEARNING
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KI-DIABETES DETECTION PROJECT

The goal is to integrate data from various sources and apply
machine learning methods to improve the early-stage detection of Diabetes.
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| GENE EXPRESSION DATA

Gene expression values are numerical representations indicating the expression levels of genes under
specific conditions.

The expression values are organized in a matrix m X n, where m is the number of samples, n is the
number of genes, and m << n.

G1 G2 G3 G4 G5 G6 e Gn
P1 GEP1,G1 GEP1,G2 GEP1,G3 GEP1,G4 GEP1,G5 GEP1,GG GEP1,Gn
P2 G EPZ,G1 GEPZ,GZ GEP2,Gs GEP2,G4 G EP2,G5 G Epz,es T GEP2,Gn

Pm GEPm,G1 GEPm,GZ GEPm,GB GEPm,G4 GEPm,GS GEPm,GG U GEPm,Gn




GENE EXPRESSION INTEGRATION CHALLENGE

G1 G2 .. G3 G4
Gene expression datasets typically only P1/0.1 0.9 .. P3|0.3 0.4
have few instances, and different datasets P210.8 0.7 .. P4/0.5 0.8
record different gene expressions.
Avg|0.4 06 - Avg|0.4 0.3
Solutions
Use only one dataset, Try to combine multiple
thereby having only little datasets that are typically
training data. “incompatible”.




KNOWLEDGE GRAPHS AND DATA INTEGRATION

900+ biomedical ontologies biologic sl oathway molecular
: , process component function

covering many domains and

fitting different applications.

Knowledge graphs (KGs) can
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METHODOLOGY

The goal is to integrate multiple expression datasets into a biomedical KG and then use it for diabetes prediction.

Building the

Gl o2 knowledge graph o _
P1(0.1 09 .. Learning patient representations Predicting diabetes
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METHODOLOGY

STEP I: BUILDING THE KNOWLEDGE GRAPH

. . . . Gl G2 G3 G4
The KG is built by integrating:
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METHODOLOGY

STEP I: BUILDING THE KNOWLEDGE GRAPH

The KG is built by integrating: o _u . _H _ _
Using binning P1{0.1 0.9 ... P3|0.3 04 .. Us|ngpa.t|ent-
- Gene expression data approsch . P2)08 07 ... P4j05 08 .. _genelns
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representing patient gene ‘ ‘ . ‘
expression values in a KG T e ‘ ‘ ‘ ‘
using blank nodes and O O O @ O O O O
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METHODOLOGY

STEP I: BUILDING THE KNOWLEDGE GRAPH

The KG is built by integrating:

» Gene expression data
using two strategies:
representing patient gene
expression values in a KG
using blank nodes and
binning approaches;
linking patients and genes
based on expression
values.

» Domain-specific
knowledge including Gene
Ontology (GO) data, and
protein interactions.
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METHODOLOGY

STEP II: LEARNING PATIENT REPRESENTATIONS

Two distinct approaches are

employed to represent patients: T,

@O
S ee @@0
» Generating RDF2vec G}?agg H l
embeddings directly for the
patients using the KG. Q Q . Neural
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METHODOLOGY

STEP II: LEARNING PATIENT REPRESENTATIONS

Two distinct approaches are @_’Q Q Q
@—0O-O O

employed to represent patients: '

 Generating RDF2vec Q}?ﬁ 1
embeddings directly for the
patients using the KG. Q Q . Langusen Model

* Generating RDF2Vec gene Q Q Q Q O Q Q l
embeddings and represents
patients as the weighted Q Q O Q @ @
average of gene embeddings, Weighted
determined by the respective v average

gene expression values.
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METHODOLOGY

STEP Ill: PREDICTING DIABETES

Diabetes prediction is
formulated as a binary
classification task.

The patient representations are
fed into a decision tree for
training.

F1<=0.8
gini = 0.442
samples = 68

True class = Non TD1 False

F2<=0.9 F3<=0.3

gini = 0.248 gini = 0.469

samples = 40 samples = 28

class = Non TD1 class = TD1
gini=0.116 gini = 0.430 gini = 0.330 gini = 0.395
samples = 31 samples = 9 samples = 8 samples = 20
class = Non TD1 class = Non TD1 class = Non TD1 class = TD1
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DATA

Three diabetes-related GEO datasets (GSE15932, GSE30208, and GSE55098) are considered.

Number of samples Number of shared genes @
Datasets Total T1D Non-T1D GSE15932  GSE30208  GSE55098 Gene Expression Omnibus
GSE15932 63 37 26 368 0 0
GSE30208 22 12 10 0 764 337 m
GSE55098 16 8 8 0 337 764 Natiohia) Llorary
Number
Triples 2433477
Types of relations 56
GO classes 51375
Proteins 19169
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| EXPERIMENTAL SETUP

To assess the efficacy of the
proposed methodology, the diabetes
performance on the GSE15932
dataset is analyzed by enriching the
training data with information from the
GSE30208 and GSE55098 datasets.

A stratified cross-validation strategy is
employed to ensure robust evaluation.

1st experiment

2"d experiment

GSE15932 GSE15932
Fold 1 Fold 1
Fold 2 Fold 2
Fold 3 Fold 3
Fold 4 Fold 4
Fold 5 Fold 5

GSE30208 GSE30208

GSE55098 GSE55098
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5th experiment

GSE15932

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

GSE30208

GSE55098

Training set

Test set




BASELINES

Exclusively employing data from one single dataset.
2 baselines that employ

the expression values of
the patient directly as

input for the classifier: Merging all measured genes across datasets and
setting the value to 0 when the patient does not have
an expression value.

G1 G2
P1/0.1 09 ...
P210.8 0.7 ... G1 G2 G3 G4
A 04 06 P1/101 09 0 O
vg| 0. .
— P2|10.8 0.7 0O O
G3 G4 . P3| 0 0O 03 04
P3 (0.3 0.4 ... P41 0O O 05 0.8
P4 |05 0.8
Avgl0.4 0.3
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PERFORMANCE RESULTS

The results confirm the
hypothesis that injecting
other expression datasets
can improve the
performance of machine
learning models.

The strategy involving the
weighted average of gene
embeddings for patient
representation emerges as
particularly promising.

Acc Pr Re F1 WAF AUC
Baselines
Only one dataset 0.554 0708 0561 0578 0529 0.560
Using all the datasets 0.442 0.650 0.314 0.396 0.422 0474
Proposed Methodology
@Zﬁgﬁtzfzvgsggne o, 0619 0677 0739 0683 0589 0.606
E;triﬁr:‘; raegbggﬂ KEGwith 5481 0565 0579 0551 0460 0.466
Patientrep. using KGwith 4 se3 538 0604 0595 0567 0578

patient-gene links

Table 1: Average diabetes prediction performance on the

GSE30208 dataset for the baselines and our methodology.
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ABLATION STUDY

(a) Using binning approach (b) Using patient-gene links
Domain knowledge 061 Domain knowledge
0.7 with with
without 0.5 without
0.6
]
& 0.4
i 0.5 .
©
S 0.4 0.3
£
S 0.3
k5 0.2-
[
0.2
o1 0.1-
0.0+—— . : . . . 0.0— . : . | |
Ac Pr Re F1 WA  AUC Ac Pr Re F1 WA  AUC

Performance metric

Figure 1: Performance comparison between using a KG with and without domain
knowledge generated with (a) binning and (b) patient-gene links.
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Knowledge about
protein functions and
interactions can play
an important role in
integrating data from
datasets measuring
gene expression
across different
genes.



| CONCLUSIONS

We present an approach that enables a comprehensive
representation of gene expression data from different datasets
within a KG.

The results of our experiments showed that integrating gene
expression data improves the performance of diabetes
prediction.

The proposed approach is versatile and can be extended to
the prediction of other diseases.
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NEGKNOW CHALLENGE @ ISWC

N EG KNOW Description Important Dates Tasks v Submission Evaluation Organization Contacts

Welcome to NEGKNOW

Knowledge Graph Predictions using Negative

Statements Challenge

Download Data &

CHALLENGE DESCRIPTION

This challenge aims to encourage participants to develop novel approaches that can
effectively handle negative statements in knowledge graphs (KGs).

Since ontologies are already able to express negation and the enrichment of
biomedical KGs with interesting negative statements is gaining traction, this
challenge focuses on exploring ontology-rich biomedical KGs. These KGs use an
ontology to provide rich descriptions of real-world entities instead of focusing on
describing relations between entities themselves. Furthermore, there is an essential
difference between a positive and a negative statement related to the implied
inheritance in this kind of KG. A positive statement between an entity and an
ontology class implies a positive statement between that entity and all the
superclasses of the ontology class. Conversely, a negative statement between an
entity and an ontology class implies a negative statement between the entity and all
the subclasses of the ontology class.

Participants in this challenge will be evaluated on three relation prediction tasks.
Relation prediction is the task of learning a relation between two KG entities (a pair)
when the relation itself is not explicitly defined in the KG.

References:

N

ents [Sousa et al.,
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challengenegknow@gmail.com

https://negknow.github.io/NEGKNOW/index.html
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