ESWC 2022

TOWARDS SUPERVISED BIOMEDICAL SEMANTIC SIMILARITY

Rita **T.** Sousa, Sara Silva, Catia Pesquita LASIGE, Faculdade de Ciências da Universidade de Lisboa

5th Workshop on Semantic Web solutions for large-scale biomedical data analytics SeWeBMeDA 2022 May 29

MEASURING ENTITY SIMILARITY IN THE BIOMEDICAL DOMAIN IS FUNDAMENTAL

There are a wide variety of bioinformatics applications that benefit from using similarity.

Protein-Protein Interaction Prediction Disease-associated Genes Identification

LASIGE

BIOMEDICAL ONTOLOGIES AND KNOWLEDGE GRAPHS (KGs) CAN BE USED TO COMPUTE SEMANTIC SIMILARITY

Ontologies and Knowledge Graphs (KGs) provide the scaffolding for comparing biological entities at a higher level of complexity by comparing the ontology classes with which they are annotated.

LASIGE

TAXONOMIC SEMANTIC SIMILARITY MEASURES (SSMs) ARE GENERALLY DESIGNED BY AN EXPERT

U LISBOA

KG EMBEDDINGS CAN ALSO BE USED TO COMPUTE SEMANTIC SIMILARITY THROUGH VECTOR SIMILARITY

KG embedding methods map each node to a lower-dimensional space in which its graph position and the structure of its local graph neighborhood are preserved.

SEVERAL SSMs HAVE BEEN PROPOSED OVER THE YEARS AND APPLIED IN THE BIOMEDICAL DOMAIN

LASIGE FC

para a Ciência

e a Tecnologia

DIFFERENT USE CASES MAY REQUIRE DIFFERENT SIMILARITY PERSPECTIVES

HOW CAN WE TAILOR SSMs TO FIT A SPECIFIC APPLICATION AND BIOLOGICAL PERSPECTIVE ON SIMILARITY?

KGs DESCRIBE ENTITIES USING DIFFERENT SEMANTIC ASPECTS (SAs)

A SA is a perspective of the KG entities, and it can correspond to a given set of portions of the graph (e.g., describing a protein only through the BP subgraph) or property types (e.g., describing a protein only through *regulate* relation).

Using supervised machine learning (ML) to tailor aspect-oriented semantic similarity measures to fit a particular view on biological similarity or relatedness.

LASIGE

As pre-defined semantic aspects, the toolkit uses the subgraphs when the KGs have multiple roots or the subgraphs rooted in the classes at a distance of one from the KG root class.

LISBOA

Ciências

ULisboa

LASIGE

3

4

LISBOA

Ciências

ULisboa

LASIGE

Learning of supervised similarity tailored to the similarity proxy

Supervised Similarity (ADK, PKLR)

14

EVALUATION

Benchmark datasets^[1] exploit 3 similarity proxies for biomedical entity similarity and include data from Gene Ontology (GO) and Human Phenotype Ontology (HP).

Dataset	Number datasets	Proxies	KGs		
Protein	10	$\operatorname{Sim}_{\operatorname{SEQ}}$ and $\operatorname{Sim}_{\operatorname{PFAM}}$	GO KG		
Gene	1	Sim _{PS}	GO KG and HP KG		

These datasets cover multiple species and present two levels of annotation completion.

[1] Cardoso, C., Sousa, R. T., Köhler, S., & Pesquita, C. (2020). A Collection of Benchmark Data Sets for Knowledge Graph-Based Similarity in the Biomedical Domain. In European Semantic Web Conference (pp. 50-55). Springer, Cham.

LASIGE

Radar charts with the median Pearson's correlation between similarity proxy and supervised similarity.

• Taxonomic similarity performs well across many evaluations and, in most of the datasets, has better performance than embedding similarity.

LASIGE

SUPERVISED SIMILARITY

Baselines:

- whole KG similarity
- the single SA similarities
- 2 well-known strategies for combining the single aspect scores

 $SS_{ALL}(ADK, PKLR)$

SS_{BP}(ADK, P*KLR*) SS_{CC}(ADK, P*KLR*) SS_{MF}(ADK, P*KLR*)

 $SS_{MAX}(ADK, PKLR) = max(SS_{BP} + SS_{CC} + SS_{MF})$ $SS_{AVG}(ADK, PKLR) = \frac{(SS_{BP} + SS_{CC} + SS_{MF})}{3}$

Pearson's correlation coefficient between the similarity proxy using ResnikBMA for the baselines and the median Pearson's correlation coefficient between the similarity proxy and the supervised similarity.

Proxy	Dataset		Static Similarity						Supervised Similarity	
,		All	HP	BP	CC	MF	Avg	Max	XGB	RF
Sim _{PFAM}	Protein (158 512)	0.534		0.448	0.370	0.456	0.525	0.500	0.669	0.638
Sim _{seq}	Protein (158 512)	0.510		0.528	0.373	0.291	0.481	0.399	0.803	0.746
Sim _{PS}	Gene (12 000)	0.524	0.601	0.210	0.142	0.055	0.413	0.552	0.648	0.648

Improvements over the whole graph similarity and the single aspect similarities are consistent for all datasets and also clear when considering the combination of single aspects.

LÁSIGE

CLOSING REMARKS

- Our approach is able to learn a supervised semantic similarity that outperforms static semantic similarity in capturing biological similarity both using KG embeddings and standard taxonomic SSMs.
- Combining a taxonomic SSM with an ensemble method is a good choice.

Proxy	SSM	ML Algorithm		
Sim _{PFAM}	ResnikBMA	RF		
Sim _{SEQ}	SimGIC	RF		
Sim _{PS}	ResnikBMA	XGB		

• As future work, supervised similarity tailored to relevant biological similarities can be transferred to other predictive tasks.

THANK YOU FOR YOUR ATTENTION.

risousa@ciencias.ulisboa.pt

@RitaTorresSousa

https://github.com/liseda-lab/Supervised-SS

LASIGE

This work was funded by FCT through LASIGE Research Unit (UIDB/00408/2020, UIDP/00408/2020); projects GADgET (DSAIPA/DS/0022/2018) and BINDER (PTDC/CCI-INF/29168/2017); PhD grant SFRH/BD/145377/2019.

