

BIOMEDICAL KNOWLEDGE GRAPH EMBEDDINGS WITH NEGATIVE STATEMENTS

<u>Rita T. Sousa</u>¹, Sara Silva¹, Heiko Paulheim², Catia Pesquita¹ ¹LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal ²Data and Web Science Group, Universität Mannheim, Germany

> International Semantic Web Conference 6-10 November 2023

The vast majority of knowledge graph (KG) relations are defined as positive statements.

Explicitly considering negative statements improves the accuracy of representations.

However, little attention has been given to the exploration of negative statements by KG embedding approaches.

In ontology-rich KGs, there is a difference between positive and negative statements regarding the implied inheritance of properties of the assigned class.

Differences in the inheritance of properties exhibited by the superclasses or subclasses of the assigned class.

In ontology-rich KGs, there is a difference between positive and negative statements regarding the implied inheritance of properties of the assigned class.

Differences in the inheritance of properties exhibited by the superclasses or subclasses of the assigned class.

A protein that performs 'iron ion binding' also performs 'metal ion binding'.

In ontology-rich KGs, there is a difference between positive and negative statements regarding the implied inheritance of properties of the assigned class.

5

Differences in the inheritance of properties exhibited by the superclasses or subclasses of the assigned class.

- A protein that performs *'iron ion binding'* also performs *'metal ion binding'*.
- A protein that does not perform *'iron ion binding'* also does not perform *'ferric ion binding'*, but there are no guarantees that it does not perform *'metal ion binding'*.

LASIGE driven by Ciências ULisboa

Since ontologies typically declare subclass axioms, the reverse inheritance of negative statements are not adequately explored by walk-based KG embedding methods.

Classical Random Walks:

LASIGE driven by Ciências Ulisboa

Prot P1 > hasFunction > iron ion binding >
subClassOf > metal ion binding >
subClassOf > ion binding

Prot P2 > NOT hasFunction > iron ion binding >
subClassOf > metal ion binding >
subClassOf > ion binding

Challenges

(i) How can KG embedding methods distinguish between negative and positive statements?

(ii) How can the reverse inheritance implied by negative statements be adequately explored by walk-based KG embedding methods?

TrueWalks

Novel method to generate random walks on ontology-rich KGs that can distinguish between positive and negative statements and consider the semantic implications of negation in KGs.

LASIGE driven by Ciências ULisboa

TrueWalks									
Creation of the RDF graph Random walk generation Language model Final representation									
The first step is the conversion of an ontology-rich KG into an RDF graph according to the OWL to RDF Graph Mapping guidelines.									
Negative statements are incorporated in the KG using negative object property assertions stating that the individual representing a biomedical entity is not connected by the object property expression to the individual representing an ontology class.									
<pre><owl:namedindividual rdf:about="http://purl.obolibrary.org/obo/GO_0048268"></owl:namedindividual></pre>									

LASIGE driven by excellence **Ciências fundação** para a Ciência e a Tecnologia

TrueWalks									
Creation of the RDF graph	Random walk generation	Language model	Final representation						
Bias	ed walks: a positive statement in whereas a negative statement	<pre>nplies paths using subclass edges. Prot P2 > hasFunct subClassOf > meta subClassOf > ion b Prot P1 > hasFunct subClassOf > meta subClassOf > meta subClassOf > ion b</pre>	es, ion > calcium ion binding > l ion binding > inding ion > iron ion binding > l ion binding > inding						
	10	LASIGE driven by excellence Ciências ULisboa	fct Fundação para a Ciência e a Tecnologia						

	TrueW	/alks						
Creation of the RDF graph	Random walk generation	Language model	Final representation					
Biased walks: a positive statement implies paths using subclass edges, whereas a negative statement uses superclass edges.								
superClassOf subClassOf hasFunction NOT hasFunction	ion binding imetal ion binding ferrous iron binding ferric ion binding Prot P1 P2	Prot P1 > hasFunct subClassOf > meta subClassOf > ion bit Prot P2 > hasFunct subClassOf > meta subClassOf > meta subClassOf > ion bit Prot P2 > hasFunct subClassOf > meta subClassOf > meta subClassOf > meta subClassOf > meta subClassOf > fermination	<pre>ion > iron ion binding > l ion binding > inding ion > calcium ion binding > l ion binding > l ion binding > inding Function > iron ion binding > fic ion binding</pre>					
	10	LASIGE driven by Ciências ULisboa	fct Fundação para a Ciência a Tecnologia					

TrueWalks								
Creation of the RDF graph	Random walk generation	Language model	Final representation					
Positive and negative walks a language models are	are fed to neural language mode e employed: skip-gram (TrueWal	ls to learn a dual latent represe ks) and structured skip-gram n	ntation. Two alternative neural nodel (TrueWalksOA).					
Corpus: <mark>Prot P2</mark> h	asFunction calcium ion binding s	subClassOf metal ion binding s	ubClassOf ion binding					
Prot P	2	hasFu	on binding w(t+2)					
w(t)		subC metal io	n binding w(t+3)					
Input Lay	ver Projection La	yer Outpu	it Layer					
	11	LASIGE driven by excellence	Fundação para a Ciência e a Tecnologia					

TrueWalks											
Creation of the RDF graph	Random walk generation	Language model	Final representation								
The two representation	The two representations of each entity are combined using concatenation and produce a final representation.										
subClassOf superClassOf positive statement C4 C2 C1	$E1 \longrightarrow C5 \longrightarrow C7 \longrightarrow C7$	$\xrightarrow{C9} \longrightarrow \xrightarrow{Neural} \xrightarrow{E1}$									
E	$E1 \rightarrow C4 \rightarrow C2$ $E1 \rightarrow C4 \rightarrow C3$ 12	$\begin{array}{c} C1 \\ \hline \\ $	fct Fundação para a Ciência a a Tecnologia								

Data

TrueWalks is evaluated on two biomedical relation prediction tasks:

13

Protein-Protein Interaction (PPI) Prediction

- Target relations from STRING.
- Gene Ontology (GO) KG enriched with negative statements are used to describe proteins.

Gene-Disease Association (GDA) Prediction

- Target relations from DisGeNET.
- Gene Ontology (GO) KG enriched with negative statements describe genes and Human Phenotype Ontology (HP) KG describe diseases.

	GO _{PPI}	GO _{GDA}	HP _{GDA}
Classes	50918	50918	17060
Instances	440	755	162
Positive Statements	7364	10631	4197
Negative Statements	8579	8966	225

Sousa, R. T., Silva, S., and Pesquita, C. (2023). Benchmark datasets for biomedical knowledge graphs with negative statements. In Workshop on Semantic Web solutions for largescale biomedical data analytics (SemWebMeda) at ESWC 2023.

Figure extracted from DisGeNET-app.

iver Cirrhosis,

Fatty Liver

Experimental Setup

PPI and GDA prediction are relation prediction tasks. For PPI prediction, TrueWalks embeddings are employed as features for experiments (i) and (ii). For GDA prediction, since embeddings for genes and diseases are learned over two different KGs, TrueWalks embeddings are employed as features only for experiment (i).

Comparison of the KG embeddings of each entity in the pair directly through a similarity metric.

Relation Prediction using Random Forest

	Mathad	PF	PI Prediction	n		GE	A Prediction	on
	Metriod	Р	R	F-score	P		R	F-score
	TransE	0.553	0.546	0.554	0.	533	0.538	0.531
	TransH	0.566	0.562	0.566	0.	556	0.563	0.548
	TransR	0.620	0.607	0.616	0.	594	0.600	0.592
	ComplEx	0.680	0.659	0.679	0.	597	0.625	0.598
0	distMult	0.765	0.737	0.754	0.	585	0.600	0.575
ш.	DeepWalk	0.813	0.836	0.822	0.	618	0.646	0.629
	Node2vec	0.826	0.741	0.794	0.	643	0.616	0.644
	metapath2vec	0.562	0.563	0.561	0.	554	0.531	0.549
	OWL2Vec*	0.833	0.806	0.823	0.	652	0.656	0.646
	RDF2Vec	0.831	0.826	0.828	0.	623	0.625	0.615
Z	TrueWalks	0.870	0.817	0.846	<u>0.</u>	667	0.625	<u>0.661</u>
+ L	TrueWalksOA	<u>0.868</u>	0.836	<u>0.858</u>	<u>0.</u>	<u>661</u>	0.616	<u>0.654</u>

- Vector representations are combined using the Hadamard operator and are then fed into a Random Forest algorithm.
- Negative statements produce more accurate representations of entities, which allow a better distinction of true positives from false positives.

Table 1: Median scores using Monte Carlo 30 CV for both PPI and GDA prediction. P stands for KG which contains only positive statements. P+N refers to the KG where, in addition to the positive statements, negative statements were added with a new relationship.

15

Relation Prediction using Random Forest

Mathad	PF	PI Predictio	n	 GDA Prediction		1
	P	R	F-score	Р	R	F-score
TransE	0.584	0.582	0.585	0.597	0.585	0.586
TransH	0.573	0.572	0.570	0.563	0.554	0.554
TransR	0.722	0.678	0.704	0.633	0.625	0.630
ComplEx	0.750	0.720	0.740	0.549	0.545	0.545
distMult	0.813	0.740	0.784	0.530	0.523	0.534
DeepWalk	0.843	0.834	0.841	0.615	0.646	0.630
Node2vec	0.847	0.734	0.798	0.614	0.594	0.621
metapath2vec	0.557	0.569	0.558	0.527	0.531	0.522
OWL2Vec*	0.860	0.812	0.840	0.654	0.600	0.645
RDF2Vec	0.847	0.844	0.845	0.625	0.661	0.630
TrueWalks	0.870	0.817	0.846	 0.667	0.625	0.661
TrueWalksOA	<u>0.868</u>	0.836	<u>0.858</u>	<u>0.661</u>	0.616	<u>0.654</u>

- The added information given by negative statements generally improves the performance of most KG embedding methods.
- TrueWalks improve on precision and F-measure for both tasks when compared with the stateof-the-art methods.

Table 2: Median scores using Monte Carlo 30 CV for both PPI and GDA prediction. P+N refers to the KG which, in addition to the positive statements, negative statements were added with a new relationship.

P+N

16

Relation Prediction using Semantic Similarity

The semantic similarity is computed as the cosine similarity between the vectors of each entity in a pair.

	Method	Hits@10	Hits@100	MeanRank	AUC
	DeepWalk	0.125	0.380	35.406	0.847
0	Node2vec	0.163	0.375	37.275	0.827
	OWL2Vec*	0.152	0.386	33.192	0.860
	RDF2Vec	0.133	0.391	32.419	0.870
	DeepWalk	0.148	0.383	35.365	0.849
	Node2vec	0.166	0.389	34.305	0.840
z	OWL2Vec*	0.160	0.397	32.234	0.869
+ L	RDF2Vec	0.155	0.401	30.281	0.879
	TrueWalks	0.161	0.392	32.089	0.869
	TrueWalksOA	0.166	0.407	28.128	0.889

Fundação para a Ciência

 Table 3: Performance for PPI prediction using cosine similarity.

17

- TrueWalks demonstrates the potential of designing artificial intelligence approaches that explore negative statements.
- TrueWalks can be generalized to other biomedical applications where negative statements play a decisive role, such as predicting disease-related phenotypes or performing differential diagnosis.

https://github.com/liseda-lab/TrueWalks

risousa@ciencias.ulisboa.pt

@RitaTorresSousa

