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The vast majority of knowledge graph (KG) 
relations are defined as positive statements. 
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Explicitly considering negative statements improves the accuracy of representations. 
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Bruce Willis and Ryan Gosling 

are similar not just because they 

are both actors but also because 

neither was born in the U.S.
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However, little attention has been given to the 
exploration of negative statements by KG 

embedding approaches.



In ontology-rich KGs, there is a difference between positive and negative statements  
regarding the implied inheritance of properties of the assigned class.
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Since ontologies typically declare subclass axioms, the reverse inheritance of 

negative statements are not adequately explored by walk-based KG embedding methods.

Prot P1 > hasFunction >  iron ion binding > 

subClassOf > metal ion binding > 

subClassOf > ion binding

Prot P2 > NOT hasFunction >  iron ion binding > 

subClassOf > metal ion binding > 

subClassOf > ion binding

Classical Random Walks:
metal ion 

binding

ion 

binding

Prot

P1

Prot

P2

iron ion 

binding

calcium ion 

binding

ferrous iron 

binding

ferric ion 

binding

subClassOf

hasFunction

NOT hasFunction

6



7

(i) How can KG embedding methods distinguish between negative 

and positive statements?

(ii) How can the reverse inheritance implied by negative statements 

be adequately explored by walk-based KG embedding methods? 

Challenges



TrueWalks

Novel method to generate random walks on ontology-rich KGs that can distinguish between 

positive and negative statements and consider the semantic implications of negation in KGs.

Creation of the RDF graph Random walk generation Language model Final representation
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TrueWalks

<owl:NamedIndividual rdf:about=“http://purl.obolibrary.org/obo/GO_0048268”>

    <rdf:type rdf:resource=“http://purl.obolibrary.org/obo/GO_0048268”/>

</owl:NamedIndividual>

<rdf:Description>

    <rdf:type rdf:resource=“http://www.w3.org/2002/07/owl#NegativePropertyAssertion”/>

    <owl:sourceIndividual rdf:resource=“http://purl.obolibrary.org/obo/GO_0048268”/>

    <owl:assertionProperty 

rdf:resource=“http://purl.obolibrary.org/obo#has_function”/>

    <owl:targetIndividual rdf:resource=“https://www.uniprot.org/uniprotkb/Q9BY11”/>

</rdf:Description>

Negative statements are incorporated in the KG using negative object property assertions stating that 

the individual representing a biomedical entity is not connected by the object property expression to 

the individual representing an ontology class.

The first step is the conversion of an ontology-rich KG into an RDF graph 
according to the OWL to RDF Graph Mapping guidelines. 

Creation of the RDF graph Random walk generation Language model Final representation
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TrueWalks

Biased walks: a positive statement implies paths using subclass edges, 
whereas a negative statement uses superclass edges.
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TrueWalks
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TrueWalks
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TrueWalks

Positive and negative walks are fed to neural language models to learn a dual latent representation. Two alternative neural 
language models are employed: skip-gram (TrueWalks) and structured skip-gram model (TrueWalksOA). 

Corpus: Prot P2 hasFunction calcium ion binding subClassOf metal ion binding subClassOf ion binding
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TrueWalks

The two representations of each entity are combined using concatenation and produce a final representation. 
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Data

Figure adapted 

from STRING 

database.

Known interactions:

       from curated databases

        experimentally determined

Predicted interactions:

       gene neighborhood

        gene fusions
        gene co-occurrence

Others:

       text mining

        co-expression

        protein homology

Protein-Protein Interaction (PPI) 

Prediction

• Target relations from STRING.

• Gene Ontology (GO) KG enriched 

with negative statements are used to 

describe proteins.

Gene-Disease Association (GDA) 

Prediction

• Target relations from DisGeNET.

• Gene Ontology (GO) KG enriched 

with negative statements describe 

genes and Human Phenotype 

Ontology (HP) KG describe diseases.

Figure extracted from DisGeNET-app.

TrueWalks is evaluated on two biomedical relation prediction tasks:

GOPPI GOGDA HPGDA

Classes 50918 50918 17060

Instances 440 755 162

Positive 

Statements
7364 10631 4197

Negative 

Statements
8579 8966 225

Sousa, R. T., Silva, S., and Pesquita, C. (2023). Benchmark 

datasets for biomedical knowledge graphs with negative 

statements. In Workshop on Semantic Web solutions for large-

scale biomedical data analytics (SemWebMeda) at ESWC 2023.
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Experimental Setup

TrueWalks

Embeddings

(i) Relation prediction using Machine Learning:  

KG embeddings of each entity in the pair are the 

features for a binary classifier.

(ii) Relation prediction using Semantic Similarity: 

Comparison of the KG embeddings of each entity in 

the pair directly through a similarity metric.

PPI and GDA prediction are relation prediction tasks. For PPI prediction, TrueWalks embeddings are employed 

as features for experiments (i) and (ii). For GDA prediction, since embeddings for genes and diseases are 

learned over two different KGs, TrueWalks embeddings are employed as features only for experiment (i).
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Method
PPI Prediction GDA Prediction

P R F-score P R F-score

TransE 0.553 0.546 0.554 0.533 0.538 0.531

TransH 0.566 0.562 0.566 0.556 0.563 0.548

TransR 0.620 0.607 0.616 0.594 0.600 0.592

ComplEx 0.680 0.659 0.679 0.597 0.625 0.598

distMult 0.765 0.737 0.754 0.585 0.600 0.575

DeepWalk 0.813 0.836 0.822 0.618 0.646 0.629

Node2vec 0.826 0.741 0.794 0.643 0.616 0.644

metapath2vec 0.562 0.563 0.561 0.554 0.531 0.549

OWL2Vec* 0.833 0.806 0.823 0.652 0.656 0.646

RDF2Vec 0.831 0.826 0.828 0.623 0.625 0.615

TrueWalks 0.870 0.817 0.846 0.667 0.625 0.661

TrueWalksOA 0.868 0.836 0.858 0.661 0.616 0.654

P
 

P
 +

 N

• Negative statements 

produce more accurate 

representations of 

entities, which allow a 

better distinction of true 

positives from false 

positives.

Table 1: Median scores using Monte Carlo 30 CV for both PPI and GDA prediction. P stands for KG 

which contains only positive statements. P+N refers to the KG where, in addition to the positive 
statements, negative statements were added with a new relationship.

• Vector representations are 

combined using the 

Hadamard operator and are 

then fed into a Random 

Forest algorithm. 

Relation Prediction using Random Forest
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Method
PPI Prediction GDA Prediction

P R F-score P R F-score

TransE 0.584 0.582 0.585 0.597 0.585 0.586

TransH 0.573 0.572 0.570 0.563 0.554 0.554

TransR 0.722 0.678 0.704 0.633 0.625 0.630

ComplEx 0.750 0.720 0.740 0.549 0.545 0.545

distMult 0.813 0.740 0.784 0.530 0.523 0.534

DeepWalk 0.843 0.834 0.841 0.615 0.646 0.630

Node2vec 0.847 0.734 0.798 0.614 0.594 0.621

metapath2vec 0.557 0.569 0.558 0.527 0.531 0.522

OWL2Vec* 0.860 0.812 0.840 0.654 0.600 0.645

RDF2Vec 0.847 0.844 0.845 0.625 0.661 0.630

TrueWalks 0.870 0.817 0.846 0.667 0.625 0.661

TrueWalksOA 0.868 0.836 0.858 0.661 0.616 0.654

P
+

N
 

Table 2: Median scores using Monte Carlo 30 CV for both PPI and GDA prediction. P+N refers to the 

KG which, in addition to the positive statements, negative statements were added with a new 
relationship.

Relation Prediction using Random Forest

• The added information given 

by negative statements 

generally improves the 

performance of most KG 

embedding methods.

• TrueWalks improve on 

precision and F-measure 

for both tasks when 

compared with the state-

of-the-art methods.
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Method Hits@10 Hits@100 MeanRank AUC

DeepWalk 0.125 0.380 35.406 0.847

Node2vec 0.163 0.375 37.275 0.827

OWL2Vec* 0.152 0.386 33.192 0.860

RDF2Vec 0.133 0.391 32.419 0.870

DeepWalk 0.148 0.383 35.365 0.849

Node2vec 0.166 0.389 34.305 0.840

OWL2Vec* 0.160 0.397 32.234 0.869

RDF2Vec 0.155 0.401 30.281 0.879

TrueWalks 0.161 0.392 32.089 0.869

TrueWalksOA 0.166 0.407 28.128 0.889

Table 3: Performance for PPI prediction using cosine similarity.

P
 

P
 +

 N

The semantic similarity is computed as the cosine similarity 

between the vectors of each entity in a pair.

Relation Prediction using Semantic Similarity
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• TrueWalks demonstrates the potential of designing artificial intelligence approaches that explore 

negative statements. 

• TrueWalks can be generalized to other biomedical applications where negative statements play a 

decisive role, such as predicting disease-related phenotypes or performing differential diagnosis. 

risousa@ciencias.ulisboa.pt

@RitaTorresSousa

https://github.com/liseda-lab/TrueWalks

Negative statements should not be ignored

18


	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22
	Diapositivo 23

