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(Gene expression data

Gene expression values are numerical representations indicating the expression levels of genes under
specific conditions.

The expression values are organized in a matrix m X n, where m is the number of samples, n is the
number of gene fragments (sequences), and m << n.
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Gene expression integration challenge
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record different gene expressions.

A 4

Use only one dataset,
thereby having only little
training data.

Solutions

Try to combine multiple
datasets that are typically
“incompatible”.
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Knowledge graphs and data integration

900+ biomedical ontologies
covering many domains and
fitting different applications.

Knowledge graphs (KGs) can
be explored for many
biomedical applications such
as finding new treatments for
existing drugs, diagnosing
patients, identifying
associations between
diseases and genes, etc.
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Methodology

With funding from the:

=l
w A(UNIVERSITY Federal Ministry
%@L?OF MANNHEIM

and Space

The goal is to integrate multiple expression datasets into a biomedical KG and then use it for patient diagnosis.

Pre-processing gene
expression data
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Methodology

Pre-processing of gene expression data

Filtering out gene
expression values
corresponding to gene
fragments without an
associated gene are
filtered out.

Averaging expression
values across all gene
fragments corresponding
to the same gene for each
patient.
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Methodology

Building the knowledge graph

The KG is built by integrating:

» Gene expression data using
a strategy where a patients
and genes are linked based
on expression values.
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Methodology

Building the knowledge graph

The KG is built by integrating:

» Gene expression data using
a strategy where a patients
and genes are linked based
on expression values.

« Domain-specific
knowledge including Gene
Ontology (GO) data.
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Methodology

Building the knowledge graph

The KG is built by integrating:

» Gene expression data using
a strategy where a patients
and genes are linked based
on expression values.

« Domain-specific
knowledge including Gene
Ontology (GO) data.
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Methodology

Learning patient representations

+ RDF2Vec is used to generate low-dimensional representations for each KG node.
« RDF2vec is capable of adapting its vectors upon updates in the knowledge graph without a full retraining.
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Experimental data

GEQO datasets for three diseases are considered.

Disease Dataset Positive Negative
Samples Samples
GSE184050 50 66
Diabetes
type I GSE78721 68 62
GSE202295 61 50
GSE12288 110 112
Coronary
artery  GSE20681 99 99
disease
GSE42148 13 11
GSE9574 14 15
Breast
cancer GSE10810 31 27
GSE86374 124 35
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Experimental setup

(a) Single-dataset learning
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(a) Single-dataset learning
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(b) Multi-dataset learning
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(b) Multi-dataset learning

(c) Transfer learning
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Baselines :

« For each setting, our methodology is compared to baselines that employ the processed
expression values directly as input for an MLP.

» In the multi-dataset and transfer learning settings, the baseline includes two variations:
including all genes or including the overlapping genes.
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Table: Mean and standard deviation for weighted average f1-score, comparing the baselines and our methodology when coupled with MLP or GCN for the 3 settings.

Single-dataset learning

Multi-dataset learning

Transfer learning

Disease Dataset Ours Baseline Ours Baseline Ours
Baseline
MLP GNN All Overlap MLP GNN All Overlap MLP GNN
GSE184050  0.495 (0.095) 0.742(0.084) 0.809 (0.086) 0.450 (0.125)  0.559 (0.095) 0.525(0.095)  0.525 (0.135) 0.432 0.256 0.373 0.363
D:;Sgtﬁs GSE78721 0.391(0.114) 0.532(0.113)  0.563 (0.128) 0.402 (0.064) 0.359* (0.021) 0.452 (0.089) 0.401 (0.106) *0.359 0.513 0.431 0.410
GSE202295  0.507 (0.116) 0.504 (0.107) 0.470(0.114) 0.424 (0.123) 0.548 (0.157) 0.463 (0.048)  0.407 (0.056) *0.390 0.318 0.381 0.372
c GSE12288 0.440 (0.074) 0.523 (0.049) 0.568 (0.075) 0.408 (0.079)  0.479 (0.061) 0.496 (0.043)  0.482 (0.077) *0.338 0.328* 0.468 0.466
:;(tj;r?/ry GSE20681 0.328 (0.007) 0.544 (0.075)  0.542 (0.060) 0.339 (0.007) 0.333* (0.009) 0.380 (0.040)  0.520 (0.060) *0.333 0.333* 0.519 0.549
disease GSE42148 0.338 (0.099) 0.450 (0.171)  0.564 (0.282) 0.448 (0.288)  0.338 (0.099) 0.442 (0.207)  0.338 (0.179) *0.288 0.391 0.417 0.324
GSE9574 0.405 (0.113) 0.355(0.226)  0.394 (0.115) 0.578 (0.222)  0.479 (0.197) 0.394 (0.281)  0.537 (0.188) *0.353 0.425 0.386 0.299
Eariiztr GSE10810 0.558 (0.293) 0.897 (0.099)  0.879 (0.103) 0.576 (0.316)  0.700 (0.306) 0.779(0.179)  0.802 (0.107) *0.372 0.372* 0.751 0.751
GSE86374 0.441 (0.296) 0.869 (0.140)  0.865 (0.127) 0.586 (0.194)  0.562 (0.242) 0.834(0.054) 0.810 (0.051) *0.079 0.683* 0.671 0.671

* The classifier predicts everything with either label O or label 1
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Single-dataset learning
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Table: Mean and standard deviation for weighted average f1-score, comparing the baselines and our methodology when coupled with MLP or GCN for the 3 settings.

Single-dataset learning

Disease Dataset Ours
Baseline
MLP GNN

GSE184050  0.495 (0.095) 0.742(0.084) 0.809 (0.086)
Diabetes GSE78721 0.391(0.114) 0.532(0.113)  0.563 (0.128)
type I

GSE202295  0.507 (0.116) 0.504 (0.107) 0.470(0.114)

GSE12288 0.440 (0.074) 0.523 (0.049) 0.568 (0.075)
Coronary
artery GSE20681 0.328 (0.007) 0.544 (0.075) 0.542 (0.060)
disease

GSE42148 0.338 (0.099) 0.450 (0.171)  0.564 (0.282)

GSE9574 0.405 (0.113) 0.355(0.226)  0.394 (0.115)
Breast GSE10810 0.558 (0.293) 0.897 (0.099) 0.879(0.103)
cancer

GSE86374 0.441 (0.296) 0.869 (0.140) 0.865 (0.127)

Y

Contextualizing genetic
information improves patient
diagnosis, with considerable
improvements for some
datasets.
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Multi-dataset learning
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Table: Mean and standard deviation for weighted average f1-score, comparing the baselines and our methodology when coupled with MLP or GCN for the 3 settings.

Single-dataset learning

Multi-dataset learning

Diverse range of data
sources can enhance
performance in
smaller datasets.

.

Disease Dataset Ours Baseline Ours
Baseline
MLP GNN All Overlap MLP GNN
GSE184050  0.495 (0.095) 0.742(0.084) 0.809 (0.086) 0.450 (0.125)  0.559 (0.095) 0.525(0.095) 0.525 (0.135)
D;jgstﬁs GSE78721 0.391(0.114) 0.532(0.113)  0.563(0.128) 0.402 (0.064) 0.359* (0.021) 0.452(0.089) 0.401 (0.106)
GSE202295  0.507 (0.116) 0.504 (0.107) 0.470(0.114) 0.424 (0.123) 0.548(0.157) 0.463 (0.048) 0.407 (0.056)
GSE12288 0.440 (0.074) 0.523(0.049) 0.568 (0.075) 0.408 (0.079) 0.479 (0.061) 0.496 (0.043) 0.482 (0.077)
Coronary
artery GSE20681 0.328 (0.007) 0.544 (0.075) 0.542 (0.060) 0.339 (0.007) 0.333*(0.009) 0.380 (0.040)  0.520 (0.060)
disease
GSE42148 0.338 (0.099) 0.450 (0.171)  0.564 (0.282) 0.448 (0.288) 0.338 (0.099) 0.442 (0.207) 0.338(0.179)
GSE9574 0.405 (0.113) 0.355(0.226) 0.394 (0.115) 0.578(0.222) 0.479(0.197) 0.394 (0.281) 0.537 (0.188)
(I:Bariiztr GSE10810 0.558 (0.293) 0.897 (0.099) 0.879 (0.103) 0.576 (0.316)  0.700 (0.306) 0.779(0.179)  0.802 (0.107)
GSE86374 0.441 (0.296) 0.869 (0.140) 0.865 (0.127) 0.586 (0.194)  0.562 (0.242) 0.834(0.054) 0.810(0.051)

* The classifier predicts everything with either label O or label 1
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Performance results

Transfer learning

Table: Mean and standard deviation for weighted average f1-score, comparing the baselines and our methodology when coupled with MLP or GCN for the 3 settings.

Transfer learning

Disease Dataset Baseline Ours
All Overlap MLP GNN
GSE184050 0.432 0.256 0.373 0.363
Diabetes GSE78721 *0.359 0.513 0.431 0.410
type I
GSE202295 *0.390 0.318 0.381 0.372
c GSE12288 *0.338 0.328* 0.468 0.466
oronary
artery GSE20681 *0.333 0.333* 0.519 0.549
disease i
GSE42148 ReSU|tS S|m||ar tO *0.288 0.391 0.417 0.324
GSE9574 thOSG Obtalned ,In *0.353 0.425 0.386 0.299
Breast single and multi-
GSE10810 0 *0.372 0.372* 0.751 0.751
cancer dataset settings for <+~
GSE86374 our methodology *0.079 0.683* 0.671 0.671

* The classifier predicts everything with either label O or label 1
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KG Embeddings

3 clusters, each from a different dataset, with no
clear split between positive and negative classes

Gene expression for all genes Gene expression for overlapping genesj Our methodology
60 ¢ Label Label
control control
60 4 disease 60 1 disease
Dataset Dataset Dataset
404" o GSE10810 e GSE9574 e GSE10810
x  GSE86374 407 GSE10810 401 = GSE86374
GSE9574 F GSE9574
2 20_
20
0 ol
0_
i -20-
_20,
_40,
—40
_40_
760_
-60
_60_
-80 1
-80 -60 ~40 -20 0 20 40 60 60  -40  -20 0 20 40 60 80 ~40 —20 0 20 40

Figure: t-SNE plots comparing patient representations based on the gene expression values (using all genes or only the overlapping genes across the three datasets) to patient
representations generated based on KG embeddings. Each point represents a patient, with the color indicating the label and the shape indicating the dataset they originate from.
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Conclusions P

» We present an approach that enables a comprehensive
representation of gene expression data from different datasets
within a KG.

» The results of our experiments showed that integrating gene
expression data improves the performance of patient
diagnosis.

» The proposed approach is versatile and can be extended to

combining datasets with incompatible features beyond the
gene expression domain.
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Ablation studies

The performance of a GCN when the input node features are replaced with randomly initialized values and
when the model receives as input unweighted graph.

GCN w/o KGE w/o weights

The influence of using
weighted edges seems
to be less significant.

o
o
!

—

KG embeddings with
GCNs consistently
outperforms GCNs
lacking node features

aCross a” datasets. 00 55184050 GSE78721 GSE202295 GSE12288 GSE20681 GSE42148 GSES574 GSE10810 GSES6374

o
IS

Weighted Average Fl-score

0.2 4

Figure: Bar plot depicting the F-score comparisons between different GCN configurations: one
using weighted edges and KG embeddings as node features (pink bars), another with randomly
initialized node features (blue bars), and another without weighted edges (green bars)
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