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Abstract
Ontology-based semantic similarity between entities in knowledge graphs is essential for several bioin-
formatics applications, including the prediction of protein-protein interactions and the discovery of
associations between diseases and genes. Knowledge graphs typically describe entities according to dif-
ferent aspects modeled in ontologies, but both classical and graph embeddings-based semantic similarity
measures consider the graph as a whole. This can be a limitation since different use cases may require
different similarity perspectives and ultimately depend on expert knowledge for manual fine-tuning.

We present a new approach that uses supervised machine learning to tailor aspect-oriented semantic
similarity measures to fit a particular view on biological similarity. This results in a supervised semantic
similarity that is independent of the downstream application. We implement and evaluate it using
different combinations of representative semantic similarity measures and machine learning methods
with three biological similarity views: protein function family similarity, protein sequence similarity and
phenotype-based gene similarity.

The results demonstrate that our approach outperforms non-supervised methods, producing semantic
similarity models that fit different biological perspectives significantly better than the commonly used
manual combinations of semantic aspects.
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1. Introduction

Measuring the similarity or distance between two entities is fundamental to many research
fields, including biomedical informatics and artificial intelligence. When data is described
according to an ontology and structured as a knowledge graph (KG), it can be explored to
produce a semantic similarity score between two represented entities. Therefore, several
semantic similarity measures (SSMs) for ontologies and KGs have been proposed over the
years. Classical SSMs were initially based on ontologies and compute similarity between classes
structured in a hierarchical taxonomy [1]. KG embeddings, a more recent research direction,
can also be used to compute semantic similarity through vector similarity [2].

Ontologies express knowledge about a domain and allow the description of complex biological
phenomena that are not easily captured in mathematical form [3]. As such, they provide the
scaffolding for comparing biological entities at a higher level of complexity by comparing the
ontology classes with which they are annotated. There are a wide variety of bioinformatics
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applications that benefit from using semantic similarity over biomedical ontologies, namely
protein-protein interaction (PPI) prediction [4], disease-associated genes identification [5], and
drug-drug interaction prediction [6].

However, the specificity of these data mining tasks contrasts with the broad domains covered
by many biomedical ontologies. Large and successful biomedical ontologies often afford multiple
perspectives (or semantic aspects) over the entities it describes. For instance, the Gene Ontology
(GO) [7] describes protein function according to three semantic aspects: the molecular functions
they perform, the biological processes they intervene in and the cellular components where they
are active. In the same way, ChEBI [8] provides information about small chemical entities
(e.g., atoms, molecules, ion pairs, radicals, radical ions, complexes, conformers) from three
perspectives: the molecular structure, the role within a biological context or based on the
intended use by humans, and the subatomic particle. Human Phenotype Ontology (HP) [9] is
another example of a biomedical ontology that contains about terms describing phenotypic
abnormalities found in human hereditary diseases according to five categories: phenotypic
abnormality, mode of inheritance, clinical course, clinical modifier and frequency. Moreover, it can
also be the case that multiple ontologies describe the same real-world entities, each covering
different semantic aspects.

Depending on our viewpoint of the domain or the analytical task for which we want to use
semantic similarity, some semantic aspects may be irrelevant for a specific definition of similarity.
Consider the following example on comparing proteins according to their function. From a
biochemist’s point of view, two proteins playing the same molecular functions are very similar.
However, these proteins can be very different from a physiological perspective if they participate
in different biological processes at the whole-organism level. Therefore, depending on our
goal, different semantic aspects should be taken into consideration in similarity computation.
Selecting which semantic aspects to use and how they should be taken into account usually
falls to the domain expert, rendering semantic similarity applications dependent on fine-tuning.
This brings us to the challenge of tailoring SSMs to fit a specific application and biological
perspective on similarity. In previous work, we developed a method to predict protein-protein
interactions that uses genetic programming to evolve combinations of aspect-oriented semantic
similarities that are tailored for PPI prediction [10]. However, this method has a tight connection
between the tailoring of the similarity and the task it is used in.

In this work, we uncouple the tailoring of the similarity from the application task and
develop a novel approach that learns semantic similarity models tailored to better capture
particular biological similarity views, in effect producing a supervised semantic similarity.
Since there is no gold standard for the similarity between complex biomedical entities, we take
advantage of biological similarity proxies to train the models and evaluate them. These proxies
of similarity rely on objective representations of entities (e.g., gene sequence, domains) and
calculate similarity using mathematical expressions or other algorithms (e.g., BLAST-based
similarity for sequences). The proposed approach was implemented using different KG-based
SSMs, based on embeddings or taxonomic semantic similarity, coupled with different machine
learning (ML) methods. This way, we compare the behaviour of different combinations of SSMs
and ML methods in capturing different similarity perspectives.

We evaluate the proposed approach in a set of 11 benchmark datasets [11] that have varying
sizes with different semantic annotation characteristics and include data from two biomedical



ontologies, GO and HP. These datasets contain three proxies for biomedical entity similar-
ity calculated based on protein sequence similarity, protein function family similarity, and
phenotype-based gene similarity that are known to relate to relevant characteristics of the
underlying entities. Our approach is compared with combinations of semantic aspects that em-
ulate expert choices to understand how well the approach captures entity similarity. The results
achieved on the benchmark datasets demonstrate the ability of our approach to significantly
improve the estimation of similarity between biomedical entities.

2. Related Work

A SSM can be defined as a function that estimates the closeness in meaning between two entities.
Several SSMs have been proposed with most measures falling in the category of taxonomic
semantic similarity (also referred to as ontology-based semantic similarity, or only semantic
similarity) [1]. Taxonomic SSMs are generally designed by an expert based on assumptions
about how an ontology is used and what should constitute a similarity. They make extensive
use of the taxonomical aspect of an ontology, comparing classes based on subclass/superclass
relations.

KG embeddings can also be used to compute semantic similarity [2]. While some graph
embedding methods focus on exploring the graph facts solely (like translational models or
distMult [12]), others also include additional information, such as entity types, relation paths,
axioms and rules, or textual information. More recently, path-based approaches, such as
RDF2Vec [13], have been proposed by transforming the ontology graph into node sequences.

Approaches that combine taxonomic semantic similarity with ML have also been proposed.
GARUM [14] is based on a supervised regression algorithm that receives several similarity
measures of hierarchy, neighborhood, shared information, and attributes, and then predicts
a final similarity score. In evoKGsim [10], we have used genetic programming over aspect-
oriented semantic similarities to predict protein-protein interactions. However, the majority
of the work that combines ontologies and ML is focused on embeddings. Kulmanov et al. [15]
provide an overview of methods that incorporate SSMs and ontology embeddings into ML
methods.

3. Methodology

We have developed a novel approach1 to learn the similarity between entities represented in
KGs (Definition 3.1) optimized towards a specific similarity proxy. This tailoring is achieved by
considering the similarities for different semantic aspects (Definition 3.2), as opposed to the
static SSMs (Definition 3.3).

Definition 3.1. A KG is created to describe real-world entities using links to ontology classes,
represented in a graph. The nodes of the KGs represent ontology classes and entities, and edges
are employed in representing ontology classes’ relations and semantic annotations for entities.

1https://github.com/liseda-lab/Supervised-SS



Definition 3.2. A semantic aspect represents a perspective of the representation of KG
entities. It can correspond to portions of the graph (e.g., describing a protein only through the
biological process subgraph of the GO) or a given set of property types (e.g., describing a person
only through properties having geographical locations as a range).

Definition 3.3. A static SSM calculates values of similarity by processing the KG without
additional external input or tailoring to a specific similarity proxy.

An overview of the approach is shown in Figure 1. The first step consists of identifying the
semantic aspects that describe the KG entities. Our approach takes as pre-defined semantic
aspects the subgraphs when the KGs have multiple roots (such as GO) or the subgraphs rooted
in the classes at a distance of one from the KG root class. Semantic aspects can also be manually
defined by selecting the root classes which will anchor the aspects. The second step is repre-
senting each instance (i.e., a pair of KG entities) by computing the static KG-based similarities
computed for each semantic aspect. The last step is to train a supervised semantic similarity
according to the similarity proxy for which we want to tailor the similarity. The ML algorithms
are used for regression where the expected outputs are the proxy similarity values.

Figure 1: Overview of the proposed approach.

This approach is independent of the semantic aspects, the specific implementation of KG-
based similarity and the ML algorithm employed in regression. The following sections present
the specific details of the implementation that currently supports four different SSMs and eight
targeted supervised learning approaches.

3.1. Static Similarity Computation

Currently, our approach supports four different KG-based SSMs: two based on taxonomic
similarity and two based on embeddings. The taxonomic semantic similarity is calculated using
two state-of-the-art measures, derived by combining one IC approach (ICSeco [16]) with one
of two set similarity measures (ResnikBMA [17], SimGIC [18]). These were selected for their
representativeness and good performance in the biomedical domain [19].

Regarding the embedding similarity, we employ two graph embedding approaches, namely
RDF2Vec [13] and distMult [12], using an RDF2Vec python implementation2 and the OpenKE
2https://github.com/IBCNServices/pyRDF2Vec



library3. These approaches were selected because they are representative of different types of
graph embedding techniques. We generate protein or gene graph embeddings for each semantic
aspect using these approaches and then, to compute the graph embeddings similarities, we
employ cosine similarity between the vectors representing each entity in the pair.

3.2. Supervised Similarity Computation

Our approach combines the semantic similarities computed for each semantic aspect and returns
a supervised similarity. The supervised semantic similarity model is computed by a supervised
regression algorithm. Therefore, each regressor receives the similarity values for each semantic
aspect as input features (independent variables) and a similarity proxy value as the expected
output (dependent variable), and returns a single similarity score as the predicted output. We
employ eight well-known classes of ML models, representative of different types of ML methods,
to train regressors: linear regression (LR) [20], bayesian ridge (BR) [21], 𝐾-nearest neighbors
(KNN) [22], genetic programming (GP) [23], decision tree (DT) [24], random forest (RF) [25],
extreme gradient boosting, better known as XGBoost (XGB) [26], and multi-layer perception
(MLP) [27]. Except for GP and XGB, we used the scikit-learn 21.3 library [28]. For running GP
and XGB, we use gplearn 3.04 and the XGBoost 1.1.1 package5, respectively.

4. Evaluation

The novel approach is evaluated using 10 protein benchmark datasets, one gene benchmark
dataset [11] and two different KGs. These datasets, described in Table 1, explore three proxy
similarities based on protein and gene properties. In the protein datasets, two proxies of protein
similarity based on their biological properties were employed: sequence similarity and PFAM
similarity (computed as the ratio of shared PFAM annotations). These datasets cover multiple
species (Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens)
and present two levels of annotation completion: the datasets ending in “1” include proteins
with annotations in, at least, one aspect; the datasets ending in “3” include proteins with at least
one annotation in each aspect. Concerning the gene benchmark dataset, the proxy similarity is
based on the ratio of shared OMIM phenotypic series annotations.

Regarding the used KGs, we consider the GO KG and its three semantic aspects for the protein
datasets. GO [7] defines the universe of classes associated with gene product (proteins or RNA)
functions and how these functions are related with each other with respect to these three aspects:
(i) molecular function (MF), the activities that occur at the molecular level performed by the
gene product; (ii) biological process (BP), the larger process in which the gene product is active;;
(iii) cellular component (CC), the cellular compartments in which the gene product performs
a function. We built the GO KG with GO, gene product as instances, and GO annotations.
Therefore, the nodes of the GO KG represent gene product or GO classes. The KG edges
represent relationships between the GO classes or links between gene products annotated with
GO classes.
3https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0
4https://gplearn.readthedocs.io/en/stable/
5https://xgboost.readthedocs.io



Table 1
Number of proteins/genes and pairs for all datasets.

Dataset Ents Pairs
PFAM

DM1 7494 53797
DM3 5810 52460
EC1 1250 4623
EC3 748 1813
SC1 4783 42192
SC3 3660 30747
HS1 13604 60176
HS3 12487 60163
ALL1 27131 158512
ALL3 22705 142736

Gene 2026 12000

For the gene dataset, we also used the HP KG to compute the semantic similarity between two
genes based on the phenotypes that describe them. The HP [9] contains about terms describing
phenotypic abnormalities found in human hereditary diseases. The HP, genes and associated
HP annotations compose the HP KG. Therefore, in addition to the three GO aspects, we also
consider the HP phenotypic abnormality subgraph as a semantic aspect.

After semantic similarity computations, each instance of the dataset, that represents a protein
or gene pair, is represented by several features corresponding to the semantic similarity for
each semantic aspect, labeled with a proxy similarity value. The learned models correspond to
a supervised semantic similarity tailored to a specific biological similarity.

For cross-validation, each dataset is split into ten folds. The same ten folds are used through-
out all the experiments. The regression models are evaluated with the Pearson’s correlation
coefficient between the respective similarity proxies (expected values) and the obtained super-
vised similarity (predicted values). Since we use 10-fold cross-validation, the results we report
are the median and the interquartile range (IQR) of the 10 Pearson’s correlation coefficients
calculated on the 10 folds.

5. Results and Discussion

5.1. Supervised Similarity

Figures 2, 3, and 4 contain the heat maps depicting the median Pearson’s correlation coefficients
between the similarity proxy (expected output) and the supervised similarity obtained with
different ML methods and SSMs (predicted output), for each similarity proxy. To better compare
the eight ML algorithms, we also generated radar charts (Figure 5) showing the median Pearson’s
correlation coefficients between similarity proxy and supervised similarity. Radar charts reveal
which ML algorithms combined with different SSMs are scoring high or low within a dataset.
In each radar plot, the ML algorithms are represented by different colors, and the SSMs are
represented on different axes. For the sake of brevity, these radar plots only show the results



for the protein datasets combining all species’ protein pairs in the same group proxy.

Figure 2: Heat map representing the median Pearson’s correlation coefficient using sequence proxy for
each PFAM dataset.

The performance of regression models obtained by DT is globally lower compared to the
other ML algorithms. DT is one of the most commonly used approaches for supervised learning.
However, since it is based on recursive binary splitting, DT may not be suitable for the current
regression problem of finding the best combination of semantic aspects. LR and BR also show
lower correlations in many cases. The Pearson’s correlation coefficients obtained by LR and



Figure 3: Heat map representing the median Pearson’s correlation coefficient using using PFAM proxy
for PFAM datasets.

BR are identical in most of the datasets. LR and BR assume a linear relationship between the
independent and dependent variables, which is not true for many cases. This characteristic may
explain why these ML methods were not capable of learning suitable combinations of semantic
aspects.

The very tight lines in the radar plots show that KNN, GP, and MLP achieve comparable
results. Ensemble methods, like XGB and RF, achieve better results in most experiments. These



Figure 4: Heat map representing the median Pearson’s correlation coefficient using using phenotype
series proxy for gene dataset.

results were expected, since the ensemble methods combine the decisions from multiple models
to improve the overall performance, and these methods have been successfully applied to
different domains [29].

Comparing the SSMs, taxonomic similarity performs well across many evaluations and, in
the majority of the datasets, has better performance than embedding similarity. The initial
assumption was that embedding similarity could potentially outperform taxonomic similarity
since semantic similarity is limited to the taxonomic relations within the ontology. However, the
ability of taxonomic similarity to take into account class specificity may give it the advantage
over embedding similarity to estimate similarity more accurately. Besides, taxonomic similarity
measures are usually hand-crafted, providing human interpretable results for further analysis.
Comparing the two taxonomic semantic similarity approaches, we verify that, in most cases,
the maximum correlation is achieved when the ResnikBMA approach is used. Regarding the
graph embedding approaches, RDF2Vec achieves the maximum correlation in the majority of
datasets.

In order to assess whether a particular combination of an ML method and a specific SSM
increases performance, for each proxy similarity we ranked the possible combinations of SSMs
with ML algorithms within each dataset. Then, we calculated the average ranking of each
SSM-ML combination. Table 2 shows the best combination for each proxy similarity. Although
it is not straightforward to identify the best combination of SSM with ML algorithm that will
work for all datasets and use cases, the results seem to indicate that combining a taxonomic
SSM with an ensemble method is a good choice.

Table 2
Best SSM-ML combination for each proxy similarity.

Proxy SSM ML Algorithm
Simseq ResnikBMA RF
SimPFAM SimGIC RF
SimPS ResnikBMA XGB

5.2. Static versus Supervised Similarity

Tables 3, 4, and 5 compare the results obtained using static similarity and supervised similarity
for sequence, PFAM and phenotypic series proxies, respectively. The static similarity was
obtained using taxonomic SSMs (SimGIC or ResnikBMA) and embedding-based SSMs (RDF2Vec



Figure 5: Radar charts using the sequence proxy (top) and PFAM proxy (middle) for the PFAM datasets
and phenotype series proxy for the gene dataset (bottom).a

athe line for BR overlaps the line for LR.

and distMult), and computed for the whole graph, each single semantic aspect, and the average
and maximum combinations of single semantic aspects. The Pearson’s correlation coefficient
was computed for each proxy. Regarding supervised similarity, the median and inter-quartile



range (IQR) of Pearson’s correlation values were calculated for the proposed approach using a
SSM with an ensemble method (XGB or RF) for each proxy, the combinations previously shown
to produce the best results. Once again, for the sake of brevity, these tables only show the
results for the protein datasets combining all species’ protein pairs in the same group proxy.

Table 3
Pearson’s correlation coefficient between Simseq and different SSMs for the baselines and the median
and IQR of Pearson’s correlation coefficient between Simseq and supervised similarity obtained using
XGB or RF. In bold, the best result for each dataset-SSM.

Dataset SSM
Static Supervised

ALL BP CC MF AVG MAX XGB RF

Median IQR Median IQR

ALL1

ResnikBMA 0.510 0.528 0.373 0.291 0.481 0.399 0.803 0.013 0.746 0.015
SimGIC 0.568 0.552 0.406 0.415 0.547 0.406 0.640 0.033 0.589 0.004
RDF2Vec 0.501 0.540 0.437 0.419 0.544 0.457 0.657 0.014 0.610 0.014
distMult 0.435 0.398 0.236 0.322 0.467 0.429 0.570 0.009 0.577 0.009

ALL3

ResnikBMA 0.472 0.466 0.334 0.325 0.445 0.349 0.810 0.012 0.626 0.009
SimGIC 0.564 0.544 0.374 0.451 0.539 0.411 0.658 0.037 0.580 0.009
RDF2Vec 0.485 0.520 0.394 0.469 0.533 0.442 0.641 0.008 0.620 0.008
distMult 0.445 0.382 0.184 0.011 0.341 0.380 0.478 0.018 0.478 0.018

Table 4
Pearson’s correlation coefficient between SimPFAM and different SSMs for the baselines and the median
and IQR of Pearson’s correlation coefficient between SimPFAM and supervised similarity obtained using
XGB or RF. In bold, the best result for each dataset-SSM.

Dataset SSM
Static Supervised

ALL BP CC MF AVG MAX XGB RF

Median IQR Median IQR

ALL1

ResnikBMA 0.534 0.448 0.370 0.456 0.525 0.500 0.669 0.008 0.638 0.005
SimGIC 0.577 0.494 0.451 0.591 0.621 0.604 0.680 0.015 0.691 0.003
RDF2Vec 0.636 0.524 0.466 0.619 0.627 0.623 0.661 0.007 0.666 0.009
distMult 0.396 0.414 0.254 0.388 0.516 0.457 0.527 0.007 0.523 0.007

ALL3

ResnikBMA 0.521 0.431 0.387 0.463 0.514 0.480 0.674 0.015 0.651 0.005
SimGIC 0.596 0.506 0.498 0.608 0.644 0.622 0.692 0.009 0.706 0.005
RDF2Vec 0.648 0.535 0.514 0.612 0.640 0.627 0.670 0.009 0.670 0.006
distMult 0.406 0.413 0.242 0.036 0.400 0.378 0.451 0.009 0.449 0.009

The results in Tables 3 to 5 show that whatever the ensemble method and SSM, supervised
similarity always achieves higher values of correlation than static similarity. Improvements over
the whole graph similarity and the single aspect similarities are consistent for all datasets and also
clear when considering the combination of single aspects. However, there are some differences
between the similarity proxies. For the sequence proxy, it is known that the relationship between



Table 5
Pearson’s correlation coefficient between SimPS and different SSMs for the baselines and the median
and IQR of Pearson’s correlation coefficient between SimPS and supervised similarity obtained using
XGB or RF. In bold, the best result for each SSM.

SSM
Static Supervised

ALL HP BP CC MF AVG MAX XGB RF

Median IQR Median IQR

ResnikBMA 0.524 0.601 0.210 0.142 0.055 0.413 0.552 0.648 0.022 0.648 0.023
SimGIC 0.459 0.489 0.205 0.158 0.095 0.399 0.429 0.630 0.011 0.629 0.013
RDF2Vec 0.554 0.526 0.230 0.182 0.123 0.396 0.351 0.563 0.014 0.564 0.010
distMult 0.155 0.015 0.184 0.105 0.041 0.179 0.182 0.172 0.018 0.212 0.052

sequence similarity and semantic similarity is non-linear [11], so improvements over the best
static similarity are very pronounced. Regarding the PFAM proxy, we verify that MF is a relevant
semantic aspect. The more functional (or PFAM) domains two proteins share, the more likely it
will be to share molecular functions since these domains are usually responsible by assigning
functions to proteins. Supervised similarity outperforms the GO, the GO single aspects and
static combinations (average and maximum), although the improvements are more relevant for
single aspects. In the gene dataset, the differences between static and supervised similarity are
much more accentuated for the GO single aspects. These results were also expected, since the
more phenotypic series two genes are associated with, the more likely it is that they share HP
classes.

Finally, the comparison of results using protein datasets with different levels of annotation
completion can be interesting. It is known that the annotation completeness of biological
entities impacts semantic similarity [30]. Analyzing our results, we conclude that in the PFAM
datasets, lower correlations were generally found for the incomplete annotation datasets, but
the opposite happens in the PPI datasets. These results are in agreement with conclusions in
[11].

6. Conclusion

Measuring the similarity between two genes or two gene products is a fundamental aspect of
today’s biomedical informatics research. Biomedical ontologies and KGs provide meaningful
context to data and support the comparison of biomedical entities through semantic similarity.
Many KGs afford different perspectives over the data, however, existing SSMs are general-
purpose and either use the whole KG indiscriminately or depend on expert knowledge to select
and combine the relevant KG semantic aspects for each use case.

This work presented a novel approach to tailor SSMs to better capture specific biological
similarities by using semantic similarity features derived from different semantic aspects with ML
methods. We tested our approach with four KG-based similarity measures based on embeddings
or taxonomic semantic similarity, and eight ML methods. However, our approach is independent
of the SSM and the chosen ML method. A comparative evaluation of the five SSMs combined



with the eight ML algorithms was conducted using 11 benchmark datasets covering different
species, levels of annotation completion, KGs describing them, and similarity proxies employed
in them. The biological similarity proxies include protein family function similarity, protein
sequence similarity and phenotype-based gene similarity - and were used to train and evaluate
the supervised models. The results showed that our approach is able to learn a supervised
semantic similarity that outperforms static semantic similarity in capturing biological similarity
both using KG embeddings and standard taxonomic SSMs.

Currently, we have used SSMs that take into consideration semantic and structural infor-
mation. Recently, KG embedding methods that also consider lexical information to generate
embeddings, such as OPA2Vec [2], have been proposed, so there is a potential for these em-
beddings to improve the overall performance. However, we expect the main conclusion that
the tailoring of SSM using semantic aspects increases the ability of SSMs to capture specific
biological similarities to remain.

This work applied supervised ML algorithms to tailor semantic similarity to different similarity
proxies and evaluated the correlation for supervised and static similarity. In future work, we will
apply these supervised semantic similarities to bioinformatics tasks such as predicting protein-
protein interactions, drug-target interactions or gene-disease associations. Our expectation
is that a supervised similarity tailored to relevant biological similarities can transfer to these
predictive tasks, outperforming static similarity and moreover performing competitively with
supervised learning approaches without requiring specific training.
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